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methods is that linear systems are solved with a given
matrix, which means that systems of equations can beFor a discretization of the 3D steady incompressible Navier–

Stokes equations a solution method is presented for solving flow solved by this black-box solver. More recently these meth-
problems on stretched grids. The discretization is a vertex-centered ods are also being used for computational fluid dynamics
finite volume discretization with a flux splitting approach for the problems, for block-structured grids for example in [34,convective terms. Second-order accuracy is obtained with the well-

8]. Moreover, Krylov methods are very interesting for dis-known defect correction technique (B. Koren, J. Comput. Phys. 87,

25, 1990). The solution method used is multigrid, for which a plane cretizations on unstructured grids, where robust multigrid
smoother is presented for obtaining good convergence in flow do- smoothers from structured grids, like line smoothers, are
mains with severely stretched grids. A matrix is set up in a plane, often not available. A combination of both solution meth-
which is solved iteratively with a preconditioned GMRES method.

ods is not very often seen. Multigrid is sometimes used asHere, a stop criterion for GMRES is tested, which reduces the num-
preconditioner for Krylov methods [22], or as inner itera-ber of inner iterations compared to an ‘‘exact’’ plane solver without

affecting the multigrid convergence rates. The performance of the tion in GMRES-type methods [38]. Here, we will combine
solution method is shown for a Poisson model problem and for 3D both solution techniques for 3D incompressible fluid flow
incompressible channel flow examples. Q 1997 Academic Press problems with severe stretching of grid cells.

Several methods have been proposed for the discretiza-
tion of steady incompressible Navier–Stokes equations on1. INTRODUCTION
block-structured grids. Probably the most widely adopted
approach is to use Cartesian velocity unknowns and pres-With the appearance of supercomputers in the field of
sure as dependent variables on a collocated grid. The pion-numerical mathematics, fast multigrid and preconditioned
eering papers of this collocated approach are by Rhie andKrylov subspace solution methods were constructed for
Chow [24] and Peric [20]. In our work the collocated ap-solving large systems of discretized partial differential
proach is also adopted for solving the steady equations.equations. In the eighties the multigrid method became a

very popular method for solving computational fluid dy- The 3D equations are discretized on a block-structured
namics problems. Its efficiency in solving nonlinear prob- grid with vertex-centered finite volumes. The discretization
lems, for example in compressible Euler, Navier–Stokes, in general domains is presented in [18] and is based on the
and incompressible Navier–Stokes equations, has led to 2D discretization in [7]. With a flux splitting formulation of
many multigrid publications, mostly for block-structured the steady incompressible Navier–Stokes equations, well-
applications. The fact that in nonlinear multigrid it is not known discretization and solution methods derived from
necessary to store a matrix resulted in algorithms to solve steady compressible Navier–Stokes equations can be used,
very large (3D) systems of equations. An overview of such as in [13]. A first-order accurate upwind discretization
multigrid solution methods for computational fluid dynam- with polynomial flux difference splitting for the convective
ics problems is given in [35] and for incompressible Navier– terms [7] is implemented for solving the steady equations
Stokes equations also in [16]. directly. Second-order accuracy is obtained with van Leer’s

Preconditioned Krylov subspace methods became very second-order k-scheme [33] in the defect correction tech-
popular after the introduction of CGS [29] and GMRES nique. Nonlinear multigrid (FAS) is used as inner iteration
[27]. It was then possible to solve nonsymmetric sparse in defect correction (see [13, 35]).
matrices efficiently. An advantage of Krylov subspace It is well known that for the Poisson equation the conver-

gence rate of standard multigrid with a point smoother
tends to one for anisotropic problems, when anisotropies* This work was supported by the German Federal Ministry for Re-

search and Education under Contract IR302A7 (POPINDA Project). get more pronounced. Anisotropies might for example oc-
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cur as result of a severe stretching of grid cells. For certain
types of stretching of 3D grid cells a plane smoother is a
necessary requirement for satisfactory standard multigrid f 5 3
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4convergence [30]. Also in [3] a plane smoother was used.

There it was based on ILU relaxation for solving a 3D
Poisson equation. In the present work, plane Gauss–Seidel
smoothers which visit planes in lexicographical and zebra-
type ordering are implemented and evaluated. All un-
knowns in a plane are updated simultaneously; a 2D matrix
is set up, which is solved iteratively with a preconditioned fv 5 3
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GMRES [27] method. A stop criterion for the GMRES
plane solver is evaluated, which reduces the number of
inner iterations compared to an ‘‘exact’’ plane solver drasti-
cally, without influencing the multigrid convergence.
Firstly, this algorithm is tested for the 3D Poisson equation
on stretched grids.

For discretizations of 3D steady incompressible Navier–
Stokes equations on a stretched grid it is not clear a priori
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4 .when a plane smoother is a necessary requirement, if all
equations are smoothed simultaneously. The coupled set
of equations consists of three nonlinear momentum equa-
tions, for which the main classification depends on the
Reynolds number, and the continuity equation, whose dis-
cretization often results in an additional Poisson term for

Here u, v, and w are Cartesian velocity unknowns, p isthe pressure. The multigrid algorithms with line and plane
pressure, c is a constant reference velocity, and Re is thesmoother are compared for channel flow problems at dif-
Reynolds number defined as: Re 5 U ? L/n, with U aferent Reynolds numbers with grid stretching in length di-
characteristic velocity, L a characteristic length and n therection.
kinematic viscosity.The discretization and solution method are set up in a

Differences of the convective fluxes with respect to uparallel multiblock environment. With grid partitioning
can be written as[14] different blocks are solved in parallel on different

processors of a MIMD machine. The communication
Df 5 A1Du, Dg 5 A2Du, Dh 5 A3Du (2)among the nodes on all multigrid levels is handled by a

high-level communications library CLIC [26], based on
the portable message-passing interface PARMACS [6]. with u 5 (u, v, w, p)T and A1 , A2 , and A3 are the dis-
Finally, a multiblock 3D backward-facing step problem is crete Jacobians,
solved, in which a 3D grid is generated with different grid
stretching in the three directions.
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4 ,2. DISCRETIZATION OF INCOMPRESSIBLE

NAVIER–STOKES EQUATIONS

In Cartesian coordinates the steady incompressible Na-
vier–Stokes equations are written as a system of equa-
tions as
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where the overbar denotes the mean of variables: u 5
u 1 Du, (ui11/2, j,k 5 As (ui, j,k 1 ui11, j,k), etc.).

Matrix A will be written as a combination of A1 , A2 ,where f, g, h are the components of the convective flux
vector, and fv , gv , and hv are the viscous fluxes: and A3 as
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A 5 nxA1 1 nyA2 1 nzA3

(3)

j, k)T and (i 1 1, j, k)T, and Dui,i11 5 ui11, j,k 2 ui, j,k . With
(4) for the absolute value of DFi,i11 is found,

uDFi,i11u 5 (A1
i,i11 2 A2

i,i11) Dui,i11 . (9)
5 3

nxu 1 r nyu nzu nx

nxv nyv 1 r nzv ny

nxw nyw nzw 1 r nz

nxc2 nyc2 nzc2 0
4.

The formula used in the discretization follows from (5),
(7), and (8),

Here r 5 nxu 1 nyv 1 nzw, and (nx , ny , nz) are components Fi11/2, j,k 5 Fi, j,k 1 1/2(Fi11, j,k 2 Fi, j,k) 2 1/2uDFi,i11u
of a normal vector. Using n2

x 1 n2
y 1 n2

z 5 1, a set of three
5 Fi, j,k 1 1/2Ai,i11 Dui,i11 2 1/2uDFi,i11u (10)different eigenvectors is found for matrix A: l1 5 l2 5 r,

l3 5 r 1 a, l4 5 r 2 a, with a 5 Ïr2 1 c2. 5 Fi, j,k 1 A2
i,i11 Dui,i11 .

However, a full set of four left and right eigenvectors
was found. With left and right eigenvector matrices L and The fluxes on the other volume boundaries in (6) are
R matrix A will be split into negative and positive parts treated in the same way.
A2 and A1, The viscous fluxes fv , gv , and hv are discretized with the

Peyret control volume technique [21]. Second derivatives
A2 5 RL2L, A1 5 RL1L, A 5 A2 1 A1, (4) disappear with a shifted control volume [21, 7].

The treatment of boundary conditions, which is de-
scribed in detail in [7] is generalized to three dimensionsL2 5 l2I, L1 5 l1I, l2

i 5 min(li , 0), l1
i 5 max(li , 0),

i 5 1, 4. (I is the identity matrix.) in [18]. The resulting discretization is first-order accurate
and is so-called positive; the resulting matrix is a K-matrixThe resulting formula for the finite volume discretization

is found with (3) and (4); a linear combination of flux [35]. Irreducible K-matrices lead to M-matrices [35], which
are favorable for iterative solution. With defect correctiondifferences can be expressed as
[13, 35] second-order accuracy can be obtained by iterating
with a first-order discretized operator. The right-hand sidenxDf 1 nyDg 1 nzDh 5 (A2 1 A1) Du. (5)
is then corrected with a second-order operator. For defect
correction techniques within multigrid a common approachThe 3D vertex-centered finite volume discretization of (1)
is that only on the finest grid the right-hand side is cor-in general domains is presented in [18] and is based on
rected. The second-order scheme used in defect correctionthe 2D discretization in [7]. In the present work mainly
is van Leer’s k-scheme [33]. The vectors ui, j,k and ui11, j,kproblems in Cartesian domains will be considered. The
in (7) and (8) are replaced by respectively,most important aspects of the finite volume discretization

are repeated briefly. Integration of the convective part of
(1) over a control volume V i, j,k gives ui, j,k r ui, j,k 1

1 1 k

4
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where F 5 n.F with F 5 (f, g, h)T, n 5 (nx , ny , nz)T is the
1
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4
(ui11, j,k 2 ui12, j,k).outward normal vector on the volume side, and dS the

length of the volume side.
As an example, the evaluation of flux Fi11/2, j,k in (6) is In the y- and z-direction vectors ui, j,k , ui, j61,k , ui, j,k61 are

shown. For Fi11/2, j,k an upwind definition is used, replaced in a similar way.
All tests have been made with k 5 0, the Fromm scheme.

Fi11/2, j,k 5 1/2(Fi, j,k 1 Fi11, j,k 2 uDFi,i11u), (7) For incompressible Navier–Stokes equations it is not nec-
essary to implement a limiter. For many (2D and 3D)

DFi,i11 is found with (2) and (3), different problems at low and high Reynolds numbers wig-
gles, oscillations (for example, in the pressure distribution,

Fi,i11 5 Fi11, j,k 2 Fi, j,k 5 Ai,i11 Dui,i11 , (8) as they occur near discontinuities for compressible flow
problems), did not appear. Discontinuities in the pressure
distribution do not occur.where Ai,i11 is built as in (3) with u-values coming from (i,
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1r2i,2 j22,2k21 1r2i,2 j21,2k22)

1 hQf(r2i22,2 j22,2k22 1r2i22,2 j22,2k 1r2i22,2 j,2k22 1r2i,2 j22,2k22

1r2i,2 j,2k 1r2i22,2 j,2k 1r2i,2 j22,2k 1r2i,2 j,2k22).

This contribution of different fine-grid residuals to the
coarse-grid right-hand side is also depicted in Fig. 2. In
CFD research it is not common to use transfer operators
that depend on the operator. Full weighting for restriction

FIG. 1. The multigrid F and F cycling strategies. operators is a standard choice in CFD problems that can
be found, for example, in [35].

The prolongation operator prolongates corrections of
3. THE PARALLEL MULTIGRID METHOD unknowns to finer grids. Here, 3D trilinear interpolation

is used.The parallel multigrid algorithm consists of a host and
a node program. The host program creates node processes, Smoothing Method. The most important part of a stan-
sends initial data to the nodes, and receives calculated dard multigrid method is the smoothing algorithm. Ro-
results. Each node program performs the calculations and bustness depends in many cases primarily on the smoothing
communicates with other nodes. The parallelization is algorithm as does efficiency. Several types of Gauss–Seidel
done with the 3D block-structured communications library smoothing methods are implemented that update a system
CLIC, developed at GMD [26]. CLIC provides subroutines of coupled equations simultaneously, as advocated in [1].
for all communication tasks occurring in multiblock For discretizations of incompressible Navier–Stokes equa-
multigrid applications. Its portability is assured by an im- tions on staggered grids, coupled smoothers are well known
plementation using the message passing interface PAR- [32, 31, 16]. In the smoothing methods corrections, u9, to
MACS [6]. CLIC is also used for the parallelization of the current solution, un, are calculated. Thus,
industrial aerodynamics codes [9]. The parallelization tech-
nique used to distribute parts of a domain to different B̃(u9) 5 f 2 B(un), (13)
processes is grid partitioning [14]. The domain is split into
blocks. Along the interior block boundaries an overlap where B̃ represents a smoothing operator.
region is defined, and all operations in multigrid are per- These corrections are added to the current solution with
formed in parallel. underrelaxation factor g,

Standard nonlinear multigrid (FAS) is employed, con-
sisting of 3D restriction and prolongation operators, a un11 5 un 1 gu9. (14)
coarse grid operator coming from a direct discretization
of the partial differential equations on the coarse grid and Another type of smoothing methods for steady incom-
several Gauss–Seidel type smoothing methods. Next to
the multigrid V-cycle, also the F-cycle is used here. Figure
1 shows the cycling strategy of a V- and an F-cycle.

Transfer Operators. The restricted fine grid approxi-
mate solution is only a starting approximation on a coarse
grid in the FAS algorithm; therefore a simple restriction
operator is sufficient. For this purpose an injection opera-
tor is chosen. A part of the coarse grid right-hand side,
fI,J,K , is a full weighting restriction of fine grid residuals, r:

fI,J,K 5 Akr2i21,2 j21,2k21

1 aQh(r2i22,2 j21,2k21 1r2i,2 j21,2k21 1r2i21,2 j22,2k21 1r2i21,2j,2k21

1r2i21,2 j21,2k22 1r2i21,2 j21,2k)

1 dQs(r2i22,2 j22,2k21 1r2i22,2 j21,2k22 1r2i21,2 j22,2k22 1r2i,2j,2k21

FIG. 2. The restriction contributions for the coarse grid vertex in the1r2i,2 j21,2k 1r2i21,2 j,2k 1r2i22,2 j,2k21
(12) cube’s center: point A: contribution with Ak, B: with aQh, C: with dQs, and D:

with hQf.1r2i22,2 j21,2k 1r2i21,2 j22,2k 1r2i21,2 j,2k22
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iterations considerably, compared to « 5 1028, which repre-
sents the fact that a plane is solved with high accuracy. It
will be shown that it does not influence the multigrid con-
vergence.

In the following section the smoothers are evaluated for
test problems coming from the 3D Poisson equation and
from 3D steady incompressible Navier–Stokes equations.

4. RESULTS

Average reduction factors, en , are presented defined as

en 5 Soieq

i51 uri(n)uy

oieq

i51 uri(0)uy

D1/n

. (15)

FIG. 3. An example of unknowns that are updated simultaneously
in different smoothers for block-structured grids: (1) xLGS; (2) yLGS;

This expression is very similar to the stop criterion for the(3) zLGS; (4) (y,z)GS; (5) (x,y)GS; (6) (x,z)GS.
GMRES iteration. The main difference is that here the
maximum norm is being used in order to see the conver-
gence of single largest residuals.

pressible Navier–Stokes equations is the distributive
smoother-type, where the different equations are updated 4.1. Poisson Equation
uncoupled. Examples of distributive smoothers are SIM-

First, a Poisson equation on a 3D cubic domain is investi-PLE [19, 23] pressure correction methods, distributive
gated,Gauss–Seidel [4], and distributive ILU smoothers [36, 37].

Implemented in our code are point coupled Gauss–
Seidel smoothers, in which grid points are processed point- 2f

x2 1
2f

y2 1
2f

z2 5 4 on (0, 1) 3 (0, 1)
(16)by-point, an x-line, y-line, and z-line coupled Gauss–Seidel

smoother (xLGS, yLGS, and zLGS), and (x,y)-plane, (x,z)- fuG 5 0.
plane, and (y,z)-plane Gauss–Seidel smoothers ((x,y)GS,
(x,z)GS, (y,z)GS) that visit planes in lexicographical order. In [30] two-level analysis was performed and in [10]
Moreover, zebra plane Gauss–Seidel smoothers ((x,y)ZGS multigrid results were obtained with a lexicographical
etc.) are constructed that in a first stage visit all odd (white) plane Gauss–Seidel smoother, in which 2D multigrid was
planes and in a second stage visit all even (black) planes. used as plane solver. In [3] an ILU method was used as

An x-line smoother updates unknowns on a line y 5 plane solver in 3D multigrid. We try to confirm the need
const. and z 5 const. An (x,y)-plane smoother updates all for a plane smoother for the test cases from [30]. Multigrid
unknowns in an (x,y)-plane; see Fig. 3. All smoothers set convergence results are evaluated for the algorithms with
up a matrix for all unknowns that are updated simultane- an alternating line and a lexicographical plane smoother
ously. For point and line smoothers this matrix is solved with different stop criteria. The 3D domain with length
directly with a band LU solver. For the plane smoothers the parameters L1 , L2 , and L3 is shown in Fig. 4. The domain
matrix is solved iteratively with a preconditioned GMRES is discretized with an equal number of grid points in each
solver [27]. The number of vectors for storing the Arnoldi direction. Parameters L1 , L2 , and L3 are chosen such that
basis is chosen as 35. The preconditioner is a truncated ILU
decomposition, as presented in [28]. The drop tolerance is
set to 1022. To the author’s knowledge general black-box
multigrid methods for solving matrices coming from sys-
tems of equations are not yet available.

In order to keep the plane smoother as cheap as possible
the GMRES stop criterion « is investigated. This is defined
as oieq

i51 (uri(n)u2/uri(0)u2), the 2-norm of the sum of residuals
in the plane after n GMRES iterations divided by the 2-
norm of the initial residual for ieq equations. For scalar
partial differential equations ieq 5 1, while for the 3D
system of incompressible Navier–Stokes equations ieq 5

FIG. 4. The single block domain for the model test problems.4. The resulting criterion reduces the number of GMRES
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FIG. 5. V(1,1) multigrid convergence for 3D Poisson’s equation (493-grid). A lexicographical (y,z)-plane smoother with different stop criteria
for the GMRES plane solver is compared with an alternating line smoother (yLGS & zLGS): (a) for L1 5 10, L2 5 L3 5 1; (b) for L1 5 10,
L2 5 1, L3 5 0.1.

stretched grid cells occur. In [30] it was found that a plane nating line smoother is also shown. Instead of the linear
correction scheme the same algorithmic environment as forsmoother was a necessary tool when L1 . L2 p L3 (test

case 1) and L1 . L2 . L3 (test case 2). These test cases the incompressible Navier–Stokes equations (FAS) is used,
where the 3D matrix has not been stored, neither have theare investigated with V(1,1) multigrid cycles, meaning V-

cycles with 1 pre- and 1 postsmoothing iteration. In Fig. 5a 2D matrices in the planes. FAS is only used here, because
it is the solver developed for all equations considered. Forthe multigrid convergence results with (y,z)GS and yLGS

followed by zLGS are presented for test case 1, choosing linear equations, like the Poisson equation the algorithm
produces the same results as the linear multigrid correctionL1 5 10, L2 5 1, L3 5 1 on a 49 3 49 3 49 grid. GMRES

stop criterion « 5 1028 is compared with other stop criteria, scheme. The times are obtained using two processors of an
IBM SP2 computer, where the actual calculation took placewhere the planes are solved with less accuracy, in order

to see when the multigrid convergence rate of (y,z)GS with on a ‘‘wide’’ node. The wall-clock time for test case 1 after
six multigrid iterations with the line smoother is comparablethe high plane solution accuracy is obtained.

It is clear from Fig. 5a that a plane smoother is a neces- to the time with (y,z)GS with « 5 1021. However, in six itera-
tions the line smoother did not converge, as is shown in Fig.sary requirement; the convergence of the alternating line
5. Thetimes of the linesmoother are only presentedfor com-smoother is not satisfactory. Furthermore, the multigrid
parison with the time for the plane smoother, which solvedconvergence behavior of (y,z)GS with GMRES criterion
the problem in six iterations. It is interesting to observe that« 5 1021 is similar to the convergence with « 5 1028. With
for test case 2 the wall-clock time with the plane smootherthe other criterion « 5 0.5 extra multigrid iterations are
is less than the time needed for two multigrid iterations withneeded to reduce the residual sufficiently.
the line smoother.In Fig. 5b the multigrid convergence for test case 2,

choosing L1 5 10, L2 5 1, L3 5 0.1 is presented on a 4.2. Incompressible Model Flow Problem
49 3 49 3 49 grid. Also in this second test case the plane

As a 3D incompressible Navier–Stokes test problem thesmoother is superior, especially while a relatively coarse
flow in a tube with rectangular cross section is investigated.grid is chosen. On finer grids the convergence rate of

multigrid with the line smoother further increases toward
1, while the convergence of multigrid with plane smoothers TABLE I
does not change. With « 5 1021 three instead of two

Average Number of Inner GMRES Iterations per Plane formultigrid iterations are needed for the required conver-
Different Stop Criteria in (y,z)GS for the 3D Poisson Equation

gence. on a 49 3 49 3 49 Stretched Grid
In Table 1 the average number of GMRES iterations per

plane on all multigrid levels is presented for the stop criteria Test case 1 Test case 2
with satisfactory convergence behavior, « 5 1028 and « 5

« «1021. Also the number of iterations for « 5 5.1023 is shown,
because with this criterion again only two multigrid itera- MG level 1028 1021 5.1023 1028 1021 5.1023

tions were needed in test case 2. It can be seen that with
1 (5finest) 15.9 2.3 4.4 8.4 1.2 2.2« 5 1021 and « 5 5.1023 many inner GMRES iterations are

2 10.8 1.9 3.6 5.3 0.9 1.7saved. Wall-clock times and the number of multigrid itera-
3 6.6 1.6 2.5 3.4 0.9 1.4

tions needed are presented in Table II, where for compari- 4 3.6 0.7 1.4 2.1 0.7 0.7
son the time for several iterations of multigrid with the alter-
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TABLE II Figure 6 presents the V(1,1)- and F(1,1)-cycle multigrid
convergence for L1 5 100 and Re 5 1000. The convergenceWall-Clock Times (seconds) and Number of Multigrid
is shown for three grid sizes: Figure 6a 173 grid, Fig. 6bIterations for Different Stop Criteria in the Plane Smoother and
333 grid, and Figure 6c 493 grid. Again the plane smootherfor the Line Smoother for the 3D Poisson Equation on a 49 3

49 3 49 Stretched Grid (y,z)GS is compared to the alternating line smoother,
yLGS & zLGS.

Test case 1 Test case 2 Level independent convergence rates are observed,
comparing Figs. 6a, 6b, and 6c, which is typical for multigridNo. Sol. No. Sol.
solution methods. Furthermore, it is found that the muchSmoother Criteria its. time its. time
cheaper algorithm with « 5 1021 produces similar conver-

Plane « 5 1028 6 150.0 2 32.4 gence rates as the algorithm with « 5 1028. Also it can be
« 5 1021 6 109.9 3 39.1 seen that the rates with the plane smoother in the F-cycle
« 5 5.1023 6 115.2 2 27.4

are much better than the rates with the line smoother.
In Table III e15 is shown for three Reynolds numbers,Line yLGS & zLGS 6 103.4 2 35.7

(for time 3 52.6 10, 100, and 1000, to observe differences between diffusive
comparison) dominance (Re # 100) and convective dominance (Re $

1000) for the first-order discretization scheme. The grid
considered consists of 493 grid points, and the grid stretch-
ing L1 varies from 10 to 100. The F(1,1)-cycle is used
with three smoothers, yLGS followed by zLGS, (y,z)-planeIn the tube grids with severe stretching are generated. The
lexicographical Gauss–Seidel and (y,z)-plane zebradomain from Fig. 4 is again taken for this test problem.
Gauss–Seidel. As the stop criterion for GMRES we choseParameter L1 in Fig. 4 is varied from 10 to 100, L2 and L3
« 5 1028; we would like to investigate whether a planeare set to 1. The stretching is chosen in the flow direction,
smoother is a necessary requirement and, therefore, thebecause that seems to be a natural choice for realistic flow
plane is solved in every smoothing iteration with high ac-problems around objects.
curacy.At inflow a fully developed inflow profile is prescribed;

In Table III it can be seen that the plane smoothers areat outflow Neumann boundary conditions with a fixed pres-
superior over the alternating line smoother, when the gridsure are given.
stretching is more than a factor 10. This is especially trueFor different Reynolds numbers (Re) different underre-
for lower Reynolds numbers. For L1 5 10 the behaviorlaxation factors are used in the plane Gauss–Seidel
of all smoothers is still comparable for higher Reynoldssmoothers. Optimal values were found (as in [32]) to be
numbers. It can be observed that the zebra plane smoother
produces better convergence rates than the lexicographical

Re , 100 : g 5 1.0; 100 # Re , 1000 : g 5 0.8;
(17) plane smoother for the low Reynolds case Re 5 10. For

the other cases the results of the zebra and lexicographicalRe $ 1000 : g 5 0.6.
plane Gauss–Seidel smoothers are comparable. Finally,
from Table III it is expected that with a larger stretching
the need for the plane smoothers will be even more pro-For the line smoothers the optimal underrelaxation factor

appeared to be 1, independent of the Reynolds number. nounced.
First, the first-order upwind discretization is solved to test
the influence of the Reynolds number and the grid stretch- Defect Correction. It is now interesting to compare the

convergence behavior for the defect correction techniqueing on the multigrid algorithm. The solution method for
first-order accuracy is the inner loop inside defect correc- with the results obtained above. The channel flow problem

with parameters L1 5 100, L2 5 L3 5 1, and Re 5 1000tion and therefore its convergence rate also influences the
second-order convergence. The GMRES plane solver is is again chosen. The combination of defect corrections with

(y,z)GS appeared to converge optimal with a V(1,1)-cyclemore expensive with respect to wall-clock time and storage
for this matrix resulting from a system of equations than for as inner iteration. An F-cycle did not lead to further con-

vergence acceleration.the Poisson equation. The matrix for a system of equations
(four unknowns) must be stored for a 2D plane. Further- Figure 7 presents the defect correction convergence be-

havior for different GMRES stop criteria within (y,z)GSmore, for the truncated ILU preconditioner the same
amount of storage is needed. Next to these two ‘‘double on a 333 grid. They are compared with the line smoother

in F(1,1) that showed satisfactory convergence rates forprecision’’ arrays, seven smaller integer arrays with
pointers to elements of the 2D plane matrix and the precon- the first-order accurate discretization (Figure 6 and Table

III). In Fig. 7 it can be seen that the convergence for stopditioner are necessary.
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FIG. 6. V- and F-cycle multigrid convergence for 3D inc. Navier–Stokes equations (Re 5 1000). (y,z)GS with two stop criteria for GMRES is
compared with yLGS & zLGS, for L1 5 100, L2 5 L3 5 1: (a) 173-grid; (b) 333-grid; (c) 493-grid.

criterion « 5 1022 is identical with « 5 1026. The other defect correction iterations for all multigrid levels, except
for the coarsest (5level 4 for the 173 grid and level 5 else).criteria produce a slightly worse convergence behavior.

The algorithm with the line smoother converges slowly; Also, the average reduction factor e20 is shown for (y,z)GS
in Table IV.e20 is 0.83. Furthermore, it was found that the algorithm

with the zebra plane smoother did not lead to satisfactory Table IV shows that with « 5 1022 many GMRES itera-
tions are saved compared to « 5 1026 and that the multigridresults for the second-order discretization.

Table IV compares the average number of GMRES
iterations per plane for criteria « 5 1021, « 5 1022, and
« 5 1026. This average number is presented for 20 multigrid

TABLE III

Single Block Convergence Rates for Line and Plane Smoothers
on a 493 Grid with Different Stretching of Grid Cells (L1) in x-
Direction and for Reynolds Numbers 10, 100, and 1000

Re Smoother L1 5 10 L1 5 20 L1 5 50 L1 5 100

10 yLGS & zLGS 0.65 0.80 0.86 0.94
(y,z)GS 0.24 0.35 0.56 0.62
(y,z)ZGS 0.27 0.25 0.22 0.42

100 yLGS & zLGS 0.44 0.56 0.70 0.86
(y,z)GS 0.44 0.24 0.20 0.22
(y,z)ZGS 0.29 0.28 0.25 0.20

1000 yLGS & zLGS 0.40 0.43 0.50 0.69
FIG. 7. Convergence of second-order residuals compared for differ-(y,z)GS 0.31 0.24 0.22 0.20

ent stop criteria « in GMRES for a 3D incompressible channel problem(y,z)ZGS 0.43 0.26 0.22 0.22
at Re 5 1000, stretching parameters: L1 5 100, L2 5 L3 5 1; 333 grid points.
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TABLE IV

Average Number of GMRES Iterations per Multigrid Level
(20 mg-iterations) and Defect Correction Convergence Rates e20

for V(1,1) and (y,z)GS with Different Stop Criteria Stretching
L1 5 100 and Re 5 1000

# GMRES its. on mg. level

Grid « 1 (5finest) 2 3 4 e20

FIG. 8. Domain for flow over a 3D square duct with a 908 bend, and173 1021 8.2 5.7 3.7 — 0.65
division into three blocks.1022 11.5 8.5 5.2 — 0.63

1026 23.8 16.5 10.7 — 0.63

333 1021 9.1 7.7 5.7 4.2 0.65
1022 15.9 11.8 8.7 6.0 0.61 after some iterations planes are being solved with higher
1026 33.9 23.8 16.4 10.7 0.61

accuracy.
Instead of using a plane smoother in standard multigrid493 1021 10.7 8.9 7.4 4.8 0.63

1022 18.5 14.1 10.5 7.2 0.62 for solving these anisotropic problems, which is considered
1026 41.0 29.2 20.1 13.8 0.62 as an expensive algorithm, research has started to use non-

standard multilevel algorithms [11, 15, 17], where a coarse
grid correction is made more robust, so that a cheaper
smoother can be used. Our convergence and timing results
can be taken as starting point for comparison with suchconvergence is not influenced on all grids investigated.
nonstandard multigrid algorithms for 3D CFD problems.With « 5 1021 the multigrid convergence is also very satis-

factory on the 493 grid. The average reduction factor e20

for yLGS1zLGS in F(1,1) was 0.83 on the three grids 4.3. Three-Dimensional Flow in a 908 Bending Square
Ductconsidered. Table V compares wall-clock times for 20 de-

fect correction iterations of (y,z)GS with « 5 1022 and
The problem studied here is the 3D channel flow prob-

of yLGS1zLGS. The differences in wall-clock timers can
lem in a 908 bending square duct. Several researchers used

clearly be observed.
the geometry presented in Fig. 8 with L 5 5 to solve the
flow problem at Re 5 790 (see [18] and the referencesDiscussion. It is interesting to see that it is not neces-

sary to solve equations for a plane exactly in a plane therein). A fully developed inflow velocity profile is im-
posed at the inlet boundary; at the outflow boundary Neu-smoother. Even though, it is not guaranteed that the fixed

stop criterion, « 5 1022, found will work for all problems mann boundary conditions are prescribed.
We use this flow problem to study the influence of pa-to be considered in the future. A robust generalization of

the stop criterion for software implementations will be an rameter L on the defect correction convergence. The
Reynolds number, based on the mean entrance velocityadaptive stop criterion, for example, depending on the

current residual in a plane. This is the right-hand side in and the duct width is assumed to be 100. L varies from 20
to 100; h 5 1; R 5 1.8. The flow domain is split into threethe smoother, as can be seen in (13). It means that the

criterion is being made smaller during multigrid iterations; blocks, consisting of 33 3 33 3 33 points, as is depicted
in Fig. 8. Again the lexicographical plane smoother with
GMRES stop criterion « 5 1022 is compared to the alter-
nating line smoother. The defect correction convergence

TABLE V of the second-order results with multigrid F(2,2)-cycles is
Wall-Clock Times (seconds) for 20 V(1,1) Defect Correction presented in Fig. 9 for L 5 20, L 5 50, and L 5 100.

Iterations for (y,z)GS with Stop Criterion « 5 1022 and for Figure 9 shows that for L $ 50 the plane smoother is
yLGS & zLGS in F(1,1) for a 3D Stretched Incompressible beneficial. For L 5 20 also the alternating line smoother
Channel Problem presents a satisfactory convergence. It is interesting to ob-

serve that the convergence is not really influenced by theGrid
large discontinuity in stretching at the block boundaries

Smoother 173 333 493 for L 5 100. For this three-block problem the differences
in wall-clock time between the plane and the alternating

(y,z)GS, « 5 1022 330 3339 13331
line smoother are more pronounced: 20 F(2,2) defect cor-yLGS & zLGS 294 2447 10167
rection cycles with yLGS and zLGS cost 3340 s, 20 F(2,2)
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FIG. 9. Comparison of F(2,2) convergence of defect correction between (y,z)GS and yLGS1zLGS, flow in a 3D duct at Re 5 100 for different
values of parameter L.

cycles with the plane smoother cost 5700 s on 4 IBM SP2 test problem, the laminar flow over a backward-facing step.
thin nodes. This well-known channel flow is well studied for 2D discret-

Finally, Fig. 10 shows the vector field with reduced reso- izations (for example, in [12, 31]). For the 2D flow experi-
lution in the mid-span plane in the curve for the flow at mental results are known [2], obtained in a 3D test section.
Re 5 100. The configuration is shown in Fig. 11. It is split into four

blocks here for parallel solution.
4.4. Laminar Backward-Facing Step Flow A result of interest for this problem is, for example, the

length of the first recirculation zone. The 2D computationalIn order to test flow problems with stretching in two
results agree with the experiments only for a certain rangedirections (L1 . L2 . L3) we choose here, instead of the
of Reynolds numbers, up to Re 5 400. For higher Reynoldssystemic approach of Subsection 4.2, to investigate one
numbers the computed recirculation lengths are too small
[12, 31], due to 3D effects. We try to find the recirculation
lengths found with the experiments by solving the 3D in-
compressible Navier–Stokes equations in a wide back-
ward-facing step channel. The geometrical parameters in
Fig. 11 are chosen as h1 5 72, h2 5 4, h3 5 1, H 5 2 for
all Reynolds numbers.

In blocks 2, 3, and 4 with parameters L1 5 24, L2 5 4,
L3 5 2 stretched grids with 17 3 33 3 49 points per block
are generated. These parameters are especially chosen,
so that grid stretching occurs in two directions, and the
problems need to be solved with a plane smoother. In
block 1 17 3 33 3 25 grid points are generated, which
means a load-imbalance among the blocks. However, that
is of no concern in this test. The computations presented
are for Reynolds in the range between 400 and 1000 with
the Reynolds number defined as in [2], Re 5 U.H/n. U
is the average velocity, which is for large values of h2

approximately equal to two-thirds of the maximum inlet
velocity.

At the outflow boundary Neumann boundary conditions
are prescribed; at inflow a fully developed inflow is given.

For the first-order discretization the alternating line and
the (y,z)GS smoother were converging with similar rates
(e20 P 0.45 for F(1,1) for all Reynolds numbers investi-FIG. 10. Vector field (reduced resolution) in the mid-span plane for

flow over a 3D square duct with a 908 bend, Re 5 100. gated). However, for the defect correction it was found
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FIG. 11. Domain for flow over a 3D backward-facing step and division into four blocks.

that the alternating line smoother produced satisfactory The length of the first recirculation zone (xr) after the
step is determined on the center line of the channel. Thisresults only until Re 5 600 (e50 5 0.79 for Re 5 300),

(y,z)GS produced satisfactory convergence rates for all length is presented in Fig. 12. It is compared with the
experimental results from [2] and with the 2D results fromReynolds numbers investigated (e50 5 0.76 for Re 5 400;

e100 5 0.83 for Re 5 800). [31]. Figure 12 shows that the 2D computational results

FIG. 12. The recirculation length found with the 3D method compared with measurements and 2D results.
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